

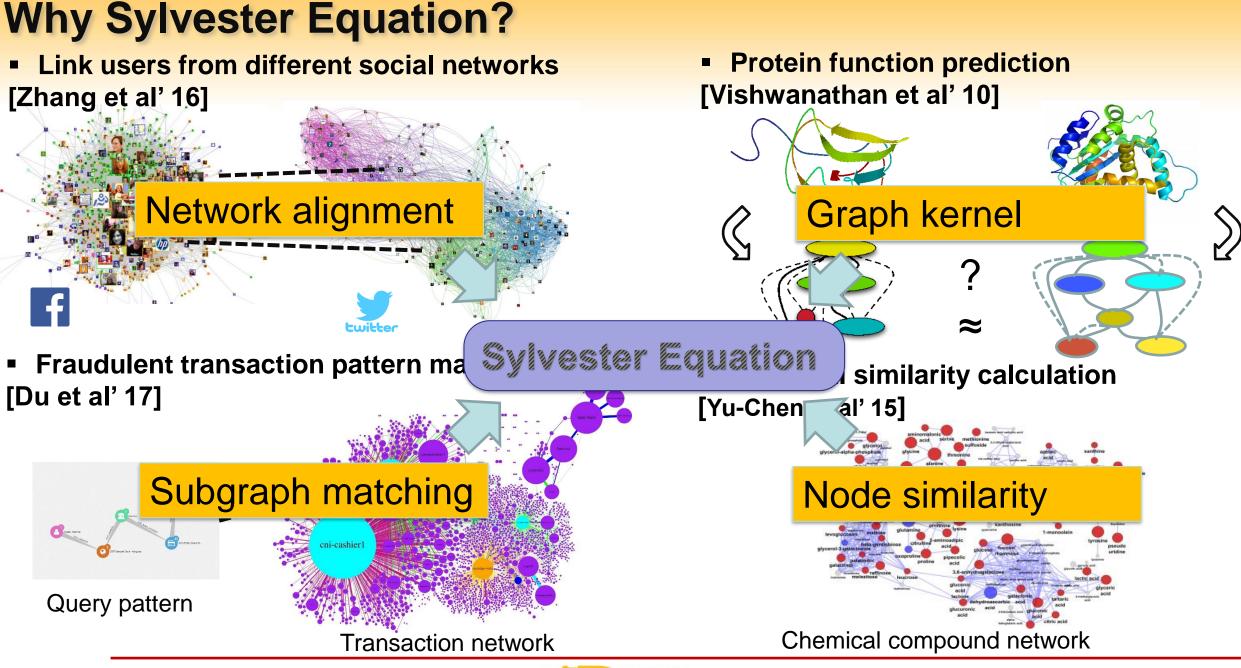
FASTEN: Fast Sylvester Equation Solver for Graph Mining

Presenter: Boxin Du

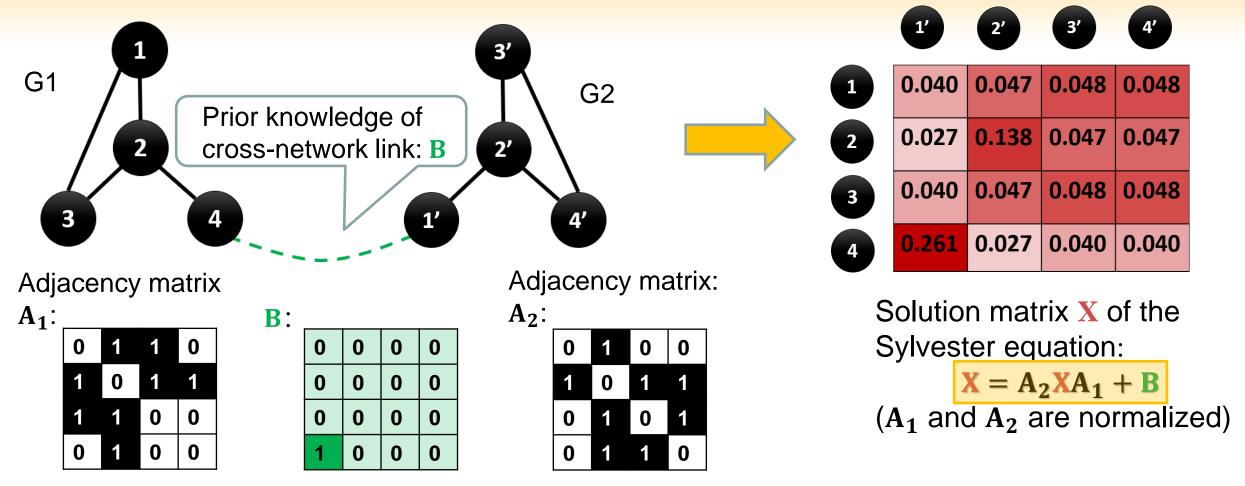
Joint work by:

Boxin Du

Hanghang Tong



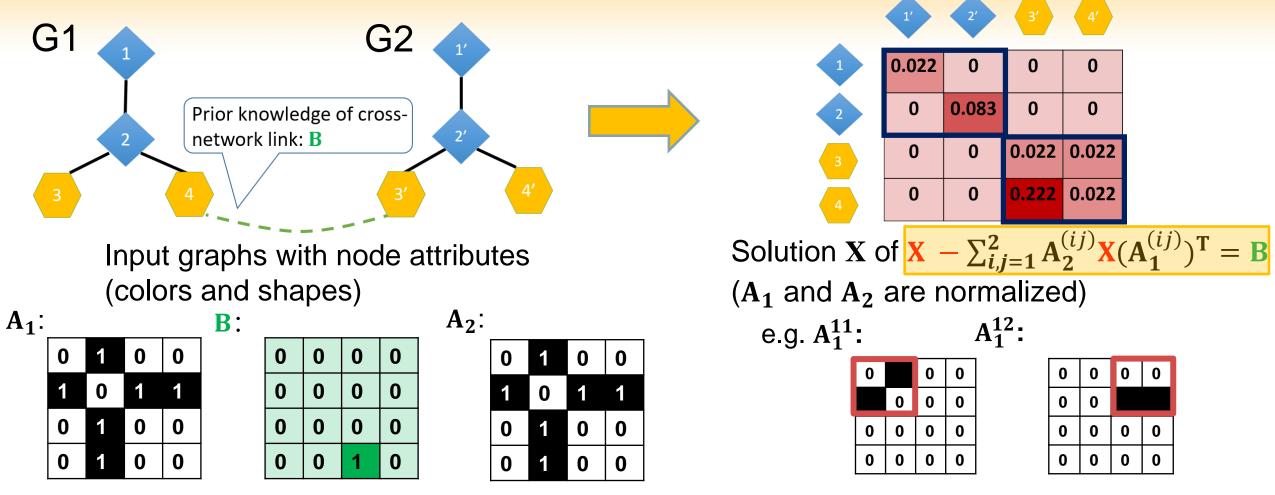
What is Sylvester Equation: an example on plain graph



• Sylvester equation $X = A_2 X A_1 + B$ gives the cross-network node similarity matrix X;

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2016.
[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology detection." *Proceedings of the National Academy of Sciences* (2008).

What is Sylvester Equation: an example on attributed graph



• Sylvester equation $\mathbf{X} - \sum_{i,j=1}^{2} \mathbf{A}_{2}^{(ij)} \mathbf{X} (\mathbf{A}_{1}^{(ij)})^{T} = \mathbf{B}$ gives the cross-network node similarity matrix **X**;

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology detection." *Proceedings of the National Academy of Sciences* (2008).

Formal Definition of Sylvester Equation (Plain Graph)

Given:

5

- Two graphs G_1 and G_2 (the adjacency matrices are A_1 and A_2);
- The preference matrix **B**.

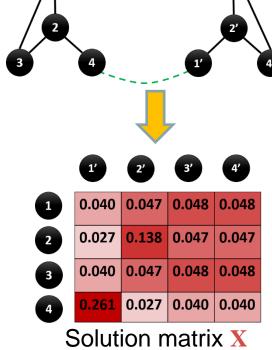
• **Find:** the solution **X** of Sylvester equation: $\mathbf{X} - \mathbf{A}_2 \mathbf{X} \mathbf{A}_1^T = \mathbf{B}$

or **x** of its equivalent linear system: (I - W)x = b

Mathematical details:

- $A_1 \leftarrow \alpha^{1/2} D_1^{-1/2} A_1 D_1^{-1/2}$, $A_2 \leftarrow \alpha^{1/2} D_2^{-1/2} A_2 D_2^{-1/2}$;
- D_1 and D_2 are the diagonal degree matrices of A_1 and A_2 , $0 < \alpha < 1$;
- $W = A_1 \otimes A_2$ (both are normalized), x = vec(X), b = vec(B).

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2016.
[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology detection." *Proceedings of the National Academy of Sciences* (2008).



G2

Formal Definition of Sylvester Equation (Attributed Graph) Given: $N_2^J(a,a) = 1$ if node **G1**

a has node attribute

j, o/w it is zero.

- Two graphs $G_1 = \{A_1, N_1\}, G_2 = \{A_2, N_2\};$
- The preference matrix **B**.

• Find: the solution X of Sylvester equation: $X - \sum_{i,j=1}^{l} A_2^{(ij)} X (A_1^{(ij)})^T = B$ or \mathbf{x} of its equivalent linear system: $\left[\mathbf{I} - \sum_{i,j=1}^{l} (\mathbf{A}_{1}^{(ij)} \otimes \mathbf{A}_{2}^{(ij)})\right] \mathbf{x} = \mathbf{b}$

Mathematical details:

•
$$A_1^{(ij)} \leftarrow \alpha^{1/2} D_1^{-1/2} N_1^i A_1 N_1^j D_1^{-1/2}, A_2^{(ij)} \leftarrow \alpha^{1/2} D_2^{-1/2} N_2^i A_2 N_2^j D_2^{-1/2};$$

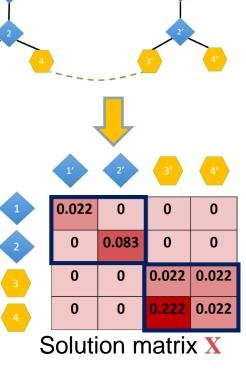
• $A_1^{(ij)}$ is the adjacency matrix 'filtered' by attribute *i* and *j*.

• l: the number of node attributes, $\mathbf{x} = \text{vec}(\mathbf{X})$, $\mathbf{b} = \text{vec}(\mathbf{B})$.

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. [2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology detection." Proceedings of the National Academy of Sciences (2008).

0 0

 A_{1}^{11}



G2

Challenges of Solving the Sylvester Equation

- Size of $A_1 \otimes A_2$:
 - $-n^2 \times n^2$ (for plain graphs with *n* nodes and *m* edges);
 - Straightforward solver costs $O(n^6)$ (time) and $O(m^2)$ (space);
 - State-of-the-art methods: time complexity at least $O(mn + n^2)$;

With node attributes:

- Add additional O(l) complexity (for l discrete node attributes);

Size of solution matrix X:

- $-n \times n$;
- Usually not sparse;
- Limit the time/space complexity of the equation solver.

The $\Omega(n^2)$ bottleneck

The $\Omega(n^2)$ bottleneck

Comparison of Methods for the Sylvester Equation

Algorithm	Attributed (Y/N)	Exact Solution (Y/N)	Time Complexity	Space Complexity	
Fixed Point (FP) [Vishwanathan et al' 10]	\checkmark	\checkmark	$O(n^{3})$	$O(m^2)$	Tra
Conjugate Gradient (CG) [Y Saad et al' 03]	\checkmark	\checkmark	$O(n^{3})$	$O(m^2)$	Iradition
Sylv. [Vishwanathan et al' 10]	\checkmark	\checkmark	$O(n^3)$	$O(m^2)$	onal
ARK [U Kang et al' 12]	\checkmark	×	$O(n^2)$	$O(n^2)$	
Cheetah [L Li et al' 10]	\checkmark	×	$O(rn^2)$	$O(n^2)$	- -
<i>NI-Sim</i> [C Li et al' 10]	X	×	$O(n^2)$	$O(r^2n^2)$	Recent methods
FINAL-P [S Zhang et al'16]	X	\checkmark	$O(mn + n^2)$	$O(n^2)$	Pode
FINAL-NE [S Zhang et al'16]	\checkmark	\checkmark	$O(lmn + ln^2)$	$O(n^2)$	07
FINAL-N+ [S Zhang et al'16]	\checkmark	X	$O(n^2)$	$O(n^2)$	
 FASTEN-P Obs.: Tradition methods: all attribute Recent methods: at least 0 (n² Q: Can we Kake ENsel Ution that is attri), anxare o	often approximation	teamotrattribute	$O(n^{2})$ plexity; ed. $O(m + kn)$ $O(m/l + n^{2})$	This Paper
FASTEN-N+	\checkmark	\checkmark	$O(km + k^2 ln)$	O(m + kln)	"
8		ТА			

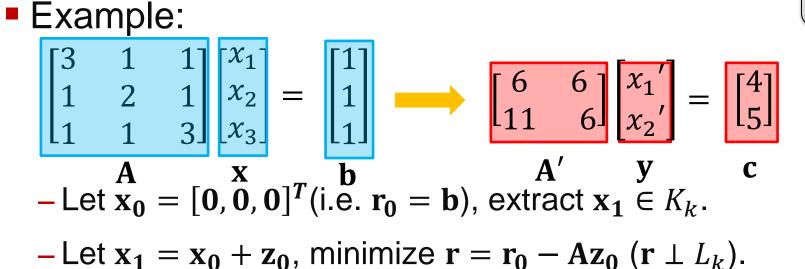
ab

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Krylov Subspace Method (KSM) for Linear System

- Minimal residual method for linear system Ax = b ($x \in \mathbb{R}^n$):
 - Extract **x** from k-dimensional subspace of $\mathbb{R}^n \longrightarrow \mathbf{x} \in \mathbf{x_0} + K_k$
 - Minimize residual $\mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x} \perp L_k$ Small scaled system
 - Iteratively update x and r until $|\mathbf{r}|_2$ is small enough



 $\mathbf{r}_{\mathbf{0}}$

 $r_0 - Az_0$: new residual

 L_k : Subspace of constraints

- Update x in 3-d space.

10

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

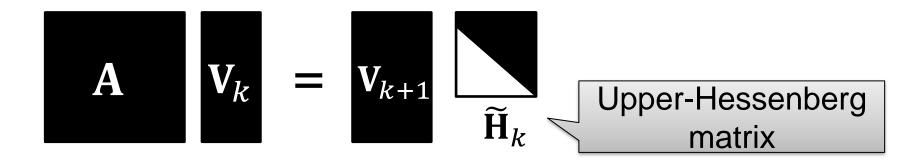
KSM for Linear System (cont'd)

Krylov subspace:

$$-K_k(\mathbf{A}, \mathbf{r_0}) = span\{\mathbf{r_0}, \mathbf{Ar_0}, \mathbf{A^2r_0}, \dots, \mathbf{A^{k-1}r_0}\}; \quad \mathbf{Ar_0} \longrightarrow \mathbf{r_2}$$

- Arnoldi process outputs *i* orthonormal basis: $\mathbf{V}_i = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i], i \in \{k, k+1\}$

 $-\mathbf{A}\mathbf{V}_k = \mathbf{V}_{k+1}\widetilde{\mathbf{H}}_k$



r_ot

V₁

Krylov subspace-based Minimal Residual method:

- Extract solution from k-dimensional Krylov subspace (let $K_k = K_k(\mathbf{A}, \mathbf{r_0})$);
- Minimize the residual \mathbf{r} and update solution at every iteration.
- [1] Saad, Yousef. *Iterative methods for sparse linear systems*. Vol. 82. siam, 2003.

Advantages of KSM with Minimal Residual

- Arnoldi: O(m) for sparse system;
- Solve small scaled system every iteration;
- Exact solution, no approximation needed;
- Upper-Hessenberg makes solving system faster.

A $\mathbf{x} = \mathbf{b}$ Minimize residual on Krylov subspace \mathbf{A}' $\mathbf{y} = \mathbf{b}$ Low dimensional system High dimensional system Update solution in original dimension

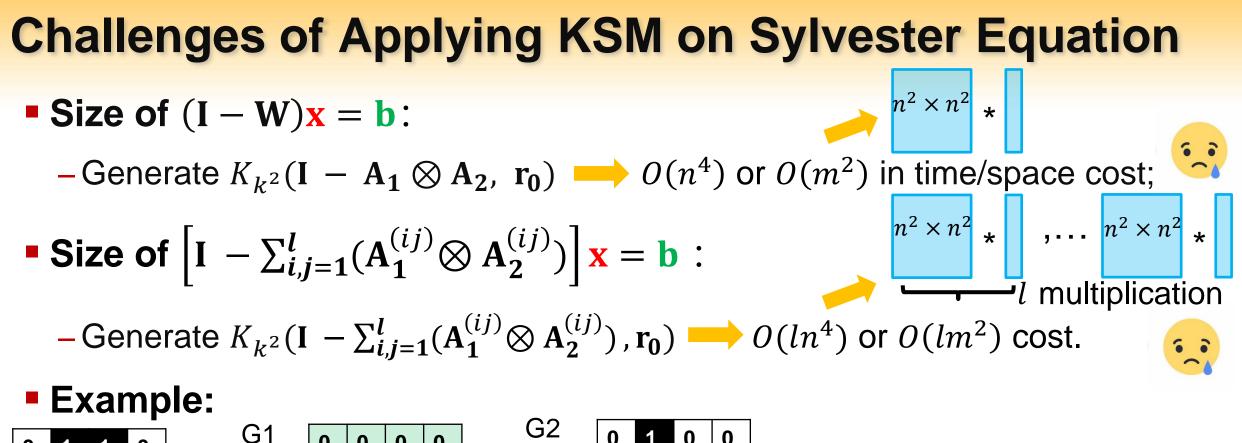
Details:

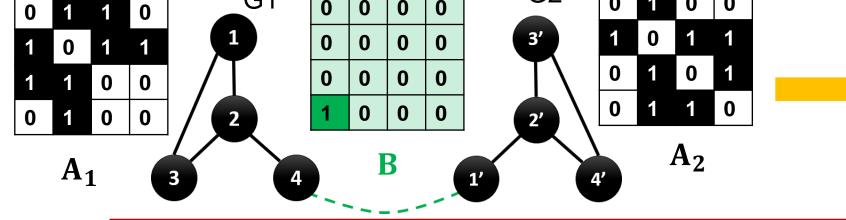
Minimize residual

 $J(\mathbf{y}) = ||\mathbf{b} - \mathbf{A}\mathbf{x}||_2$

 $= ||\mathbf{b} - \mathbf{A}(\mathbf{x}_0 + \mathbf{V}_k \mathbf{y})||_2$

[1] Saad, Yousef. *Iterative methods for sparse linear systems*. Vol. 82. siam, 2003.





Krylov subspace of $K_{k^2}(\mathbf{I} - \mathbf{A_1} \otimes \mathbf{A_2}, \mathbf{r_0})$: 16 dimension

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Key Ideas

- #1: Kronecker Krylov Subspace (KKS)
 - -Implicit construction of the original large Krylov subspace
 - -Largely reduce the time/space complexity $O(n^4) \longrightarrow O(n^2)$
- #2: MRES* on KKS with Implicit Solution Representation
 - -Solve small scaled system and update solution till converge
 - -Further reduce the time/space complexity $O(kn^2) \longrightarrow O(k^2n + km)$

*: MRES: Minimal Residual method

Kronecker Krylov Subspace (Details)

- Step 1: Choose Arnoldi vectors \mathbf{g} , \mathbf{f} ; $O(n^2)$
- Step 2: Generate $K_k(\mathbf{A_1}, \mathbf{g})$; O(km)
- Step 3: Generate $K_k(\mathbf{A_2}, \mathbf{f})$; O(km)

Details:

- Choosing g, f s.t. $\mathbf{r_0} \in K_k(\mathbf{A_1}, \mathbf{g}) \otimes K_k(\mathbf{A_2}, \mathbf{f})$:
- $-\left| \mathsf{lf} \left| |\mathsf{R}_0| \right|_1 \le \left| |\mathsf{R}_0| \right|_{\infty},$

f: R_0 's column of largest norm, $g = R_0^T f / |f|_2^2$

 $-\operatorname{lf}\left|\left|\mathbf{R}_{0}\right|\right|_{1}>\left|\left|\mathbf{R}_{0}\right|\right|_{\infty},$

g: R_0 's row of largest norm, $f = R_0^T g / |g|_2^2$

Theorem: $V_k \otimes W_k$ forms the orthonormal basis of the Kronecker Krylov subspace; don't need to be computed directly

(I – W)x = b
$$K_k(\mathbf{A_1}, \mathbf{g}) \otimes K_k(\mathbf{A_2}, \mathbf{f})$$

 $\mathbf{A}_{1}\mathbf{V}_{k} = \mathbf{V}_{k+1}\widetilde{\mathbf{H}}_{1}$

 $\mathbf{V}_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$

$$\mathbf{A}_{2}\mathbf{W}_{k} = \mathbf{W}_{k+1}\widetilde{\mathbf{H}}_{2}$$
$$\mathbf{W}_{k} = [\mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{k}]$$

Example $(I - W)\mathbf{x} = \mathbf{b}$

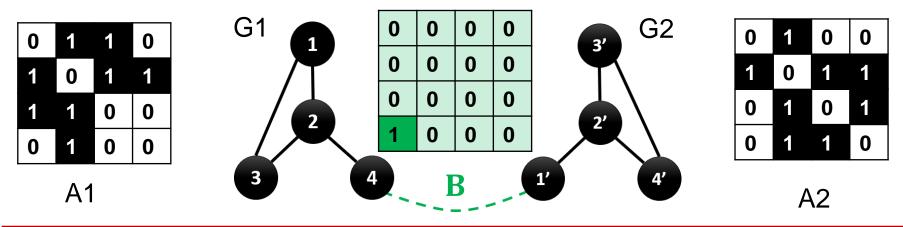
- Step 1: $\mathbf{R}_0 = \mathbf{B} (\mathbf{x}_0 = \mathbf{0}), \mathbf{f} = [0,0,0,1]^T, \mathbf{g} = [1,0,0,0]^T;$
- Step 2: $K_k(\mathbf{A_1}, \mathbf{g}) = span\{[0, 0.7071, 0.7071, 0], T [1, 0, 0, 0]^T\};$
- Step 3: $K_k(\mathbf{A_2}, \mathbf{f}) = span\{[0, 0.7071, 0.7071, 0]^T, [0, 0, 0, 1]^T\};$
- $K_k(\mathbf{A}_1, \mathbf{g}) \otimes K_k(\mathbf{A}_2, \mathbf{f}) = span\{\mathbf{v}_1 \otimes \mathbf{w}_1, \mathbf{v}_1 \otimes \mathbf{w}_2, \mathbf{v}_2 \otimes \mathbf{w}_1, \mathbf{v}_2 \otimes \mathbf{w}_2\}.$

 V_1

 W_1

 \mathbf{V}_2

 W_2



Minimal Residual (Details):

• Step 1: Initial residual: $\mathbf{r_0} = \mathbf{b} - (\mathbf{I} - \alpha \mathbf{W})\mathbf{x_0}$

• Step 2: Let new solution:

 $\mathbf{x} = \mathbf{x_0} + \mathbf{z_0}, \mathbf{z_0} \in K_k(\mathbf{A_1}, \mathbf{g}) \otimes K_k(\mathbf{A_2}, \mathbf{f})$

• Step 3: Minimize new residual:

 $(\mathbf{I} - \mathbf{W})\mathbf{x} = \mathbf{b}$

۱F

Effectiveness: this method gives the exact solution of the Sylvester equation on plain graphs w.r.t. a tolerance ϵ .

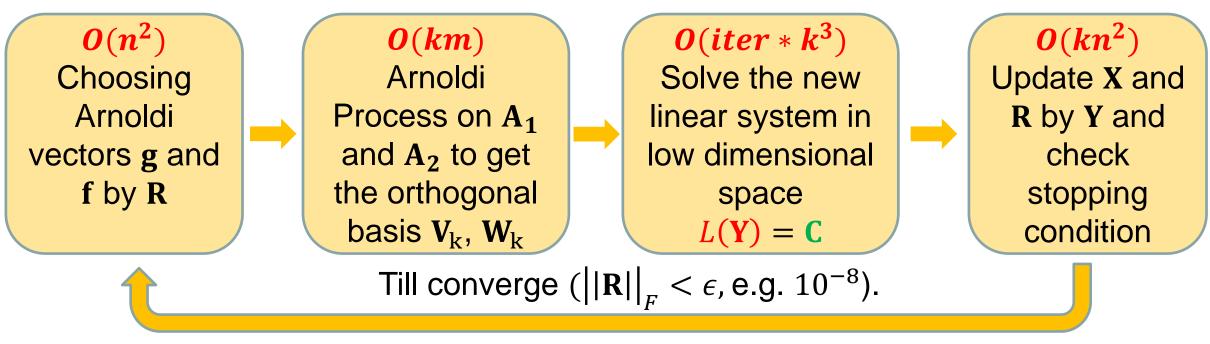
Complexity: Time: $O(kn^2)$, Space: $O(n^2)$

• Both Y and C are k by k: small scaled system.

- Step 4: Update solution X and residual R.
- $\mathbf{X} \leftarrow \mathbf{X} + \mathbf{V}_{k} \mathbf{Y} \mathbf{W}_{k}^{T}, \, \mathbf{R} \leftarrow \mathbf{R} \mathbf{V}_{k+1} \widetilde{\mathbf{H}}_{1} \mathbf{Y} \widetilde{\mathbf{H}}_{2}^{T} \mathbf{W}_{k+1}^{T} + \mathbf{V}_{k} \mathbf{Y} \mathbf{W}_{k}^{T}$

FASTEN-P

Major steps:



Details:

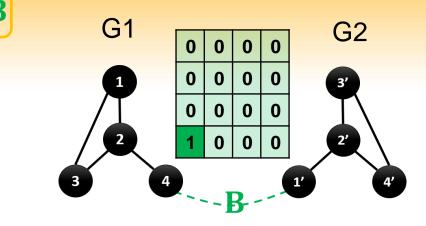
- -X is often initialized as 0, and R = B;
- Overall Complexity: time: $O(kn^2)$; space: $O(n^2)$;

Can we further scale up? $X - A_2 X A_1^T = B$

• Goal: complexity: from $O(n^2)$ to linear

Difficulties:

- **X**: $n \times n$, $O(n^2)$ seems to be the lower bound;
- -X: in general not sparse.
- Observation:



 $n \times n$

- B is often sparse and low-rank (sparse anchor links across network);
- If prior anchor links are unknown: B is uniform (rank 1);
- -B is low-rank > X must have low-rank property (see proof in paper).
- Solution:
 - Implicit representation of residual \mathbf{R} , intermediate solution \mathbf{X}

Kronecker Krylov Subspace with Low-rank Residual

- Step 1: Represent \mathbf{R}_0 by low-rank matrices $\mathbf{U}_1, \mathbf{U}_2: O(n)$.
- Step 2: Choose Arnoldi vectors \mathbf{g} , \mathbf{f} : O(rn) (r: rank of \mathbf{U}_1 , \mathbf{U}_2)
- Step 3: Generate $K_k(\mathbf{A_1}, \mathbf{g}), K_k(\mathbf{A_2}, \mathbf{f}): O(km)$, and obtain
- Details:
 - Choosing g, f (let $r_1 = e^T U_1 U_2$, $r_2 = U_1 U_2 e$):
 - $\text{ If } \max(\mathbf{r}_1) \geq \max(\mathbf{r}_2),$
 - $\mathbf{f} = \mathbf{U}_1 \mathbf{U}_2(:, i_1), \ \mathbf{g} = \mathbf{U}_2^T \mathbf{U}_1^T \mathbf{f} / |\mathbf{f}|_2^2$ (*i*₁ is the index of \mathbf{r}_1 's largest entry)
 - $-\operatorname{If} \max(\mathbf{r_1}) < \max(\mathbf{r_2}),$

 $\mathbf{g} = \mathbf{U}_2^T \mathbf{U}_1(i_2, :), \mathbf{f} = \mathbf{U}_1 \mathbf{U}_2 \mathbf{g}/|\mathbf{g}|_2^2$ (*i*₂ is the index of \mathbf{r}_2 's largest entry)

$$\mathbf{A}_{1}\mathbf{V}_{k} = \mathbf{V}_{k+1}\widetilde{\mathbf{H}}_{1}$$
$$\mathbf{V}_{k} = [\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{k}]$$

$$\mathbf{A}_{2}\mathbf{W}_{k} = \mathbf{W}_{k+1}\widetilde{\mathbf{H}}_{2}$$
$$\mathbf{W}_{k} = [\mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{k}]$$

Example

Step 1:

• B: Assume each node in G1 has at most one 1-to-1 anchor link to G2.

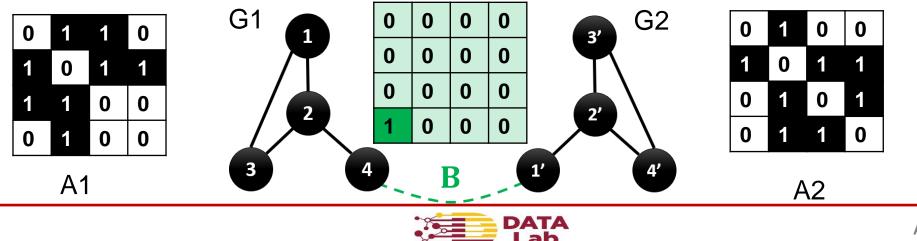
• $\mathbf{R}_0 = \mathbf{B} = [0,0,0,1]^{\mathrm{T}} * [1,0,0,0] = \mathbf{U}_1 \mathbf{U}_2; \ \mathbf{O}(n).$

• Step 2: Choose Arnoldi vectors, $\mathbf{f} = [0,0,0,1]^T$, $\mathbf{g} = [1,0,0,0]^T$; O(rn)

• Step 3:

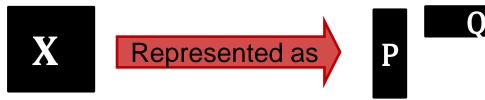
• $K_k(\mathbf{A_1}, \mathbf{g}) = span\{[0, 0.7071, 0.7071, 0], T [1, 0, 0, 0]^T\}; O(km)$

• $K_k(\mathbf{A_2}, \mathbf{f}) = span\{[0, 0.7071, 0.7071, 0]^T, [0, 0, 0, 1]^T\}; O(km)$



Minimal Residual Method with Low-rank Representation

- Step 1: Obtain and solve small scaled system $\mathcal{L}(\mathbf{Y}) = \mathbf{C}$.
- Step 2: Implicit solution representation $P = [P, V_k Y], Q = [Q, W_k^T];$
- (Original updating: $X \leftarrow X + V_k Y W_k^T$)



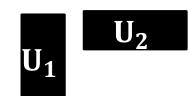
Represented as

• Step 3: Let $L_2 = V_{k+1} \widetilde{H}_1 \mathbf{Y} \widetilde{H}_2^T$, $P_2 = W_{k+1}^T$, $L_3 = V_k \mathbf{Y}$, $P_3 = W_k^T$

Low-rank property: If **B** is rank *r*, the rank of **X** is upper-bounded by *iter* * *r* (*iter*: the iteration number)

Construct new residual $\mathbf{U}_1 = [\mathbf{U}_1, \mathbf{L}_2, \mathbf{L}_3], \mathbf{U}_2 = [\mathbf{U}_2^T, \mathbf{P}_2^T, \mathbf{P}_3^T]^T$

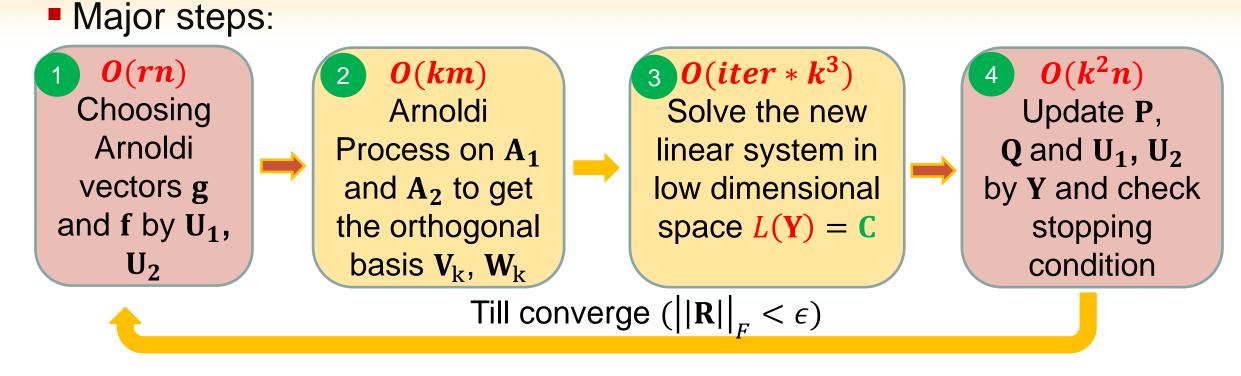
(Original updating: $\mathbf{R} \leftarrow \mathbf{R} - \mathbf{V}_{k+1} \widetilde{\mathbf{H}}_1 \mathbf{Y} \widetilde{\mathbf{H}}_2^T \mathbf{W}_{k+1}^T + \mathbf{V}_k \mathbf{Y} \mathbf{W}_k^T$)



Complexity: Time: O(k(k + 2)n), Space: O(m + kn)

R

FASTEN-P+



Details:

- 4 : $||\mathbf{R}||_{F}$ can be computed as $trace(\mathbf{U}_{2}^{\mathrm{T}}(\mathbf{U}_{1}^{\mathrm{T}}\mathbf{U}_{1})\mathbf{U}_{2});$
- Overall Complexity: time: $O(km + k^2n)$; space: O(m + kn);

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Key Ideas

#1: Decomposition of Sylvester equation

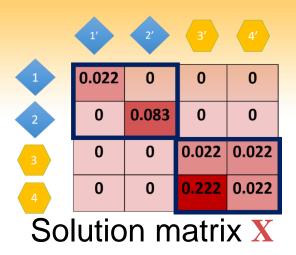
- -Decompose the equation to a inter-correlated Sylvester equation set
- -Each decomposed equation is small-scaled & fast to solve
- #2: Apply FASTEN-P(+) on decomposed equation
 - -Apply Block Coordinate Descent (BCD) on the whole equation set
 - -Efficiently solve every single equation by FASTEN-P(+)

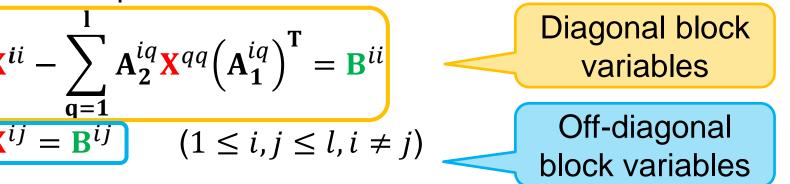
Decomposition of Sylvester Equation

Observation:

$$\mathbf{X} - \sum_{i,j=1}^{l} \mathbf{A}_{2}^{(ij)} \mathbf{X} (\mathbf{A}_{1}^{(ij)})^{\mathrm{T}} = \mathbf{B}$$

- The solution matrix ${\bf X}$ has block-diagonal structure
- The equation can be decomposed to:





 $-A_1^{iq}$ is a block of A_1 of rows from attribute *i* to columns of attribute *q*.

- Off-diagonal block: need not to be solved
- Diagonal block: apply Block Coordinate Descent (BCD)

Apply FASTEN-P(+) on Decomposed Equation

Observation:

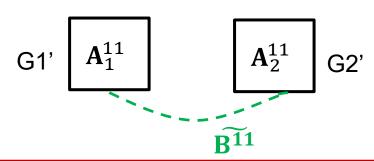
$$\mathbf{X}^{ii} - \sum_{q=1}^{l} \mathbf{A}_{2}^{iq} \mathbf{X}^{qq} \left(\mathbf{A}_{1}^{iq} \right)^{\mathrm{T}} = \mathbf{B}^{ii}$$
 Diagonal block variables

- When applying BCD: solve a non-attributed Sylvester equation each time

– e.g.: when solving X^{11} , the equation becomes:

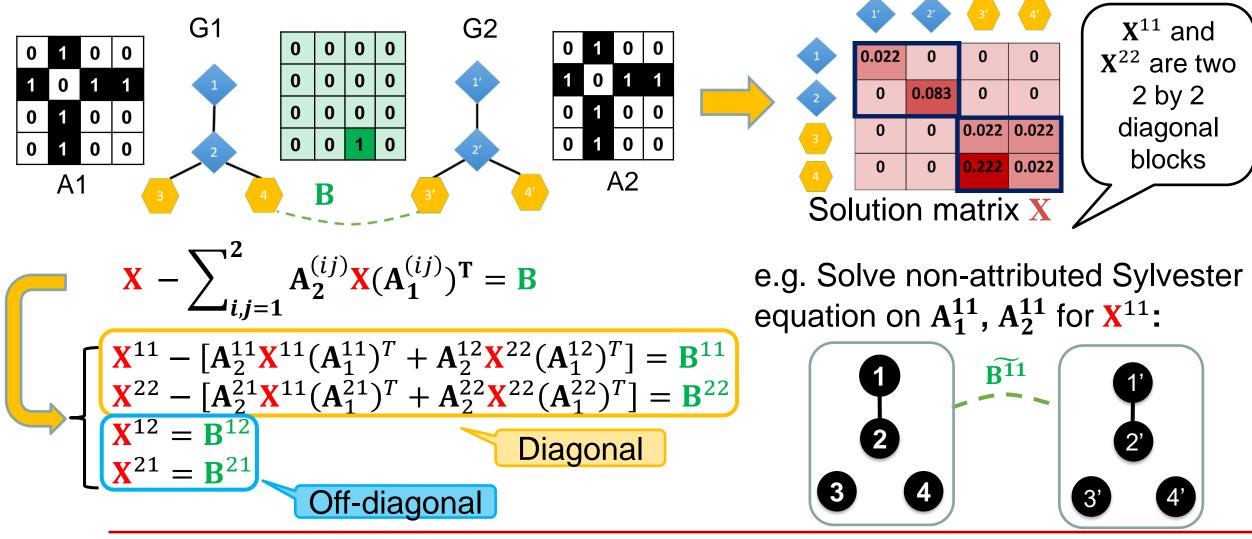
$$\mathbf{X}^{11} - \mathbf{A}_{2}^{11} \mathbf{X}^{11} (\mathbf{A}_{1}^{11})^{T} = \mathbf{B}^{11} + \sum_{q \neq 1}^{l} \mathbf{A}_{2}^{1q} \mathbf{X}^{qq} (\mathbf{A}_{1}^{1q})^{T} = \mathbf{B}^{\widetilde{11}}$$

- Apply FASTEN-P(+) to solve the above equation.

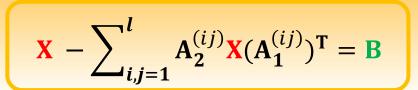


Example

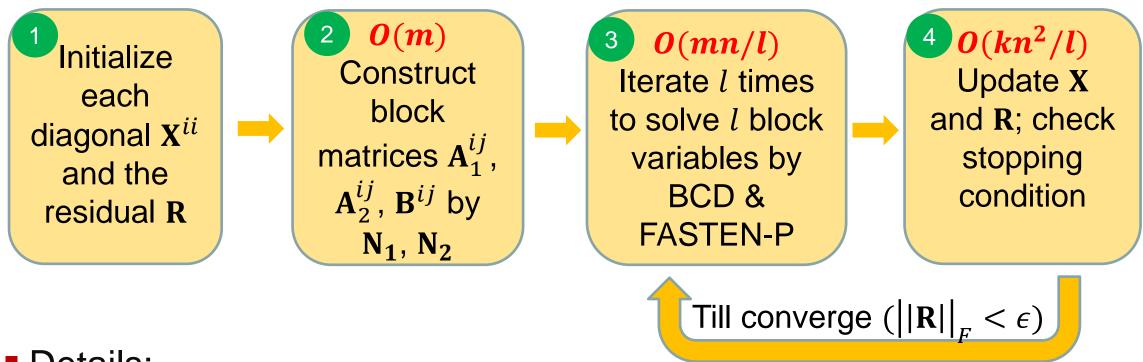
In this example, the attributed Sylvester equation is decomposed to:



FASTEN-N



Major steps:



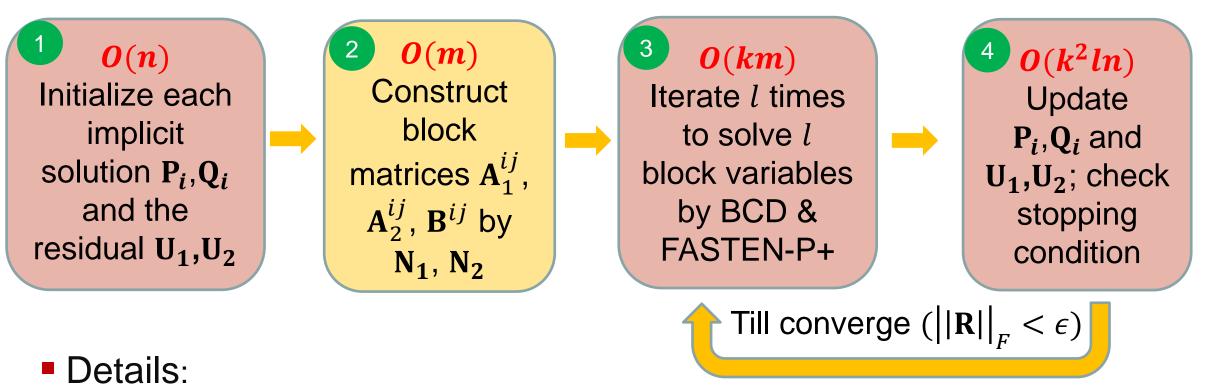
Details:

- -2: N₁, N₂ are the node attribute matrices of A₁ and A₂.
- -Overall Complexity: time: $O(mn/l + kn^2/l)$; space: $O(m/l + n^2)$;

From FASTEN-N to FASTEN-N+

$$\mathbf{X} - \sum_{i,j=1}^{l} \mathbf{A}_{2}^{(ij)} \mathbf{X} (\mathbf{A}_{1}^{(ij)})^{\mathrm{T}} = \mathbf{B}$$

Major steps:



- Key idea: apply FASTEN-P+ instead of FASTEN-P in step 3;
- Overall Complexity: time: $O(km + k^2 ln)$; space: O(m + kln);

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Experimental Setup

Datasets Summary:

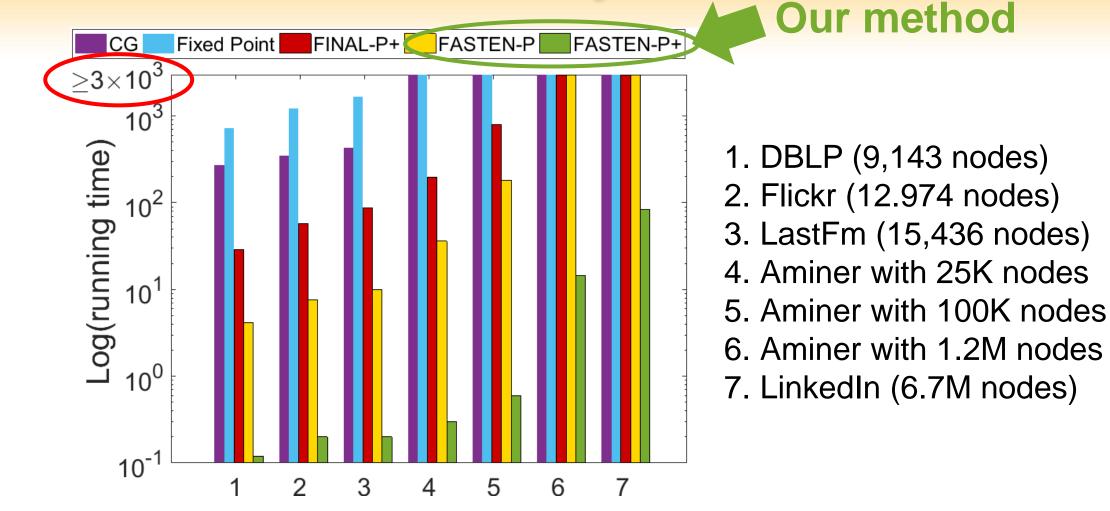
Dataset Name	Category	# of Nodes	# of Edges
DBLP	Co-authorship	9,143	16,338
Flickr	User relationship	12,974	16,149
LastFm	User relationship	15,436	32,638
Aminer	Academic network	1,274,360	4,756,194
LinkedIn	Social network	6,726,290	19,360,690

Baseline methods

- Conjugate Gradient method (CG) [Saad Y. SIAM 03]
- Fixed Point (FP) [Saad Y. SIAM 03]
- FINAL-P+ & FINAL-N+ [Zhang et al. KDD'16]

- Exact methods
- Approximated methods

Experimental Result - Efficiency

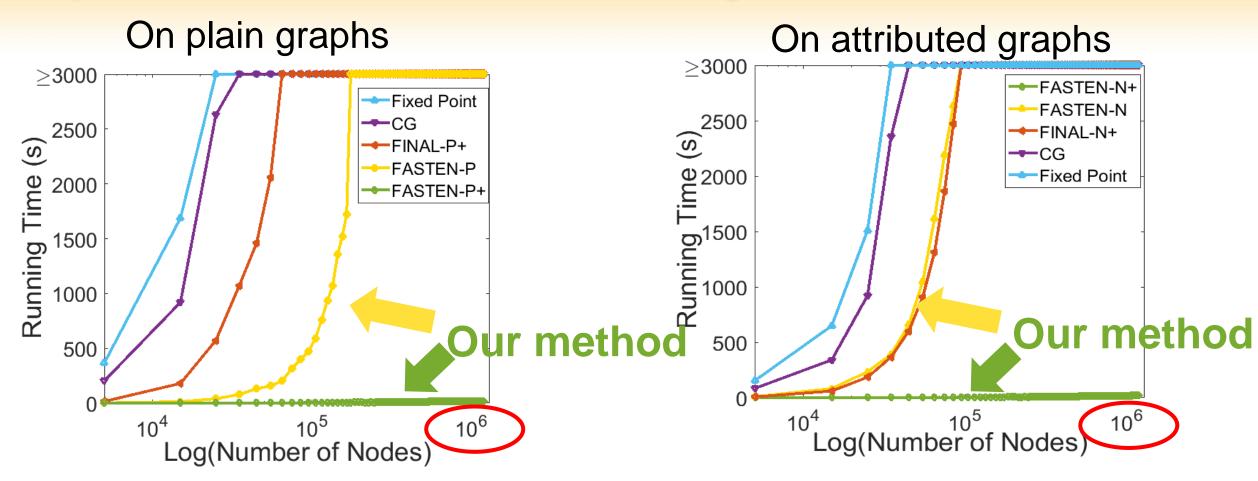


- Obs.: maximum speedup: > 10,000 times with 25K-node network.
- · Better than approximated methods!

Experimental Result - Efficiency Our method FASTEN-N+ Fixed Point FASTEN-N FINAL-N+ CG \geq 3 \times 10³ 10³ 1. DBLP (9,143 nodes) _og(running time) 10² 2. Flickr (12.974 nodes) 3. LastFm (15,436 nodes) 10¹ 4. Aminer with 25K nodes 5. Aminer with 100K nodes 10⁰ 6. Aminer with 1.2M nodes 7. LinkedIn (6.7M nodes) 10⁻¹ 10⁻² 2 3 5 4 6

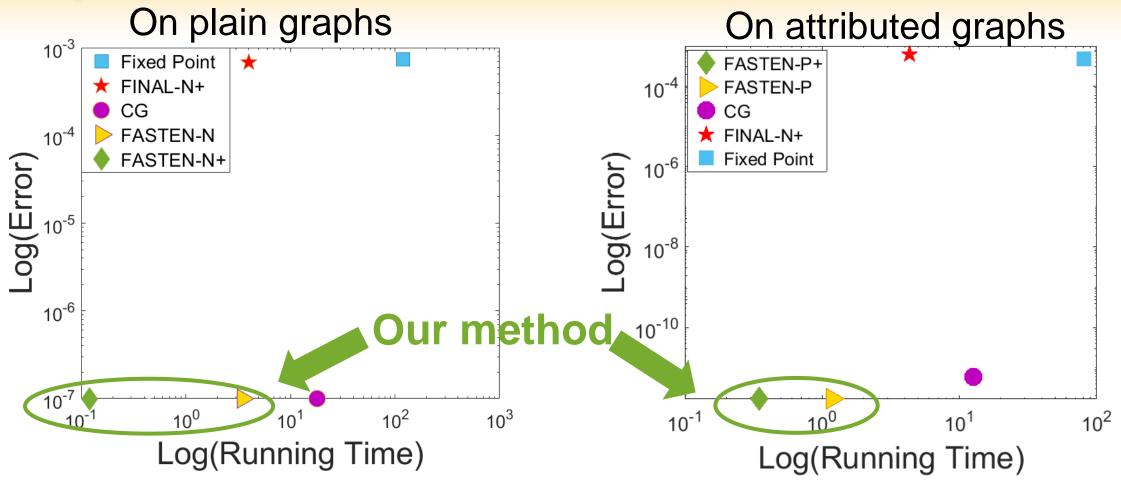
- Obs.: maximum speedup: > 10,700 times with 25K-node network.
- Better than approximated methods!

Experimental Result - Scalability



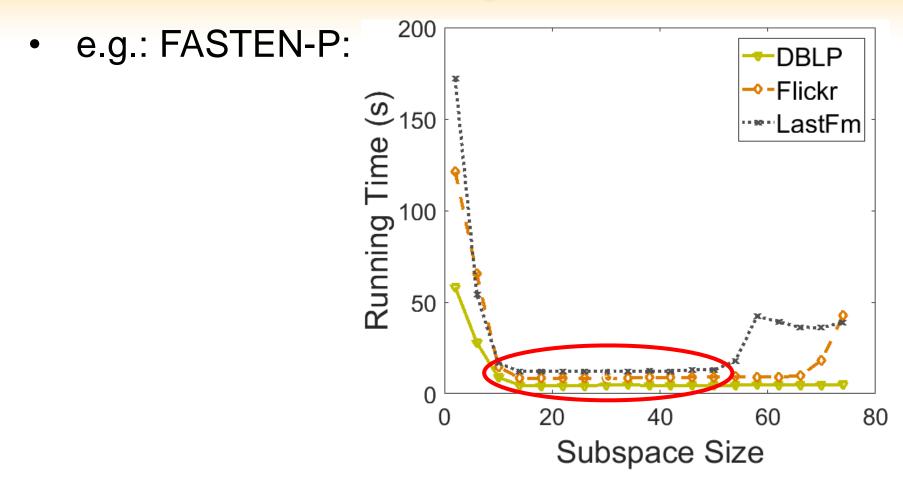
- Obs.: FASTEN-P/N scales almost in accord with FINAL-P+/N+
- FASTEN-P+/N+ scale linearly with regard to # of nodes (to over 1M)

Experimental Result - Effectiveness



• Obs.: FASTEN gives exact solution while having low running time.

Parameter Sensitivity



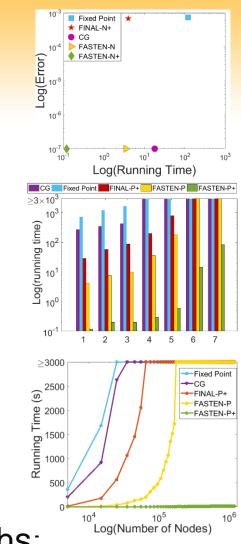
• Obs.: the running time of FASTEN-P stays stable in a range of [14,60].

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Conclusions

- Goal: Fast & exact solver for (attributed) Sylvester equation.
- Solution: "FASTEN" family
 - -Key idea #1: Generate Kronecker Krylov subspace
 - -Key idea #2: Indirect solution representation
 - -Key idea #3: Decomposition of Sylvester equation
 - -Key idea #4: BCD & FASTEN-P(+) on decomposed equation
- Results:
 - -Exact solution and *linear* scalability w.r.t the size of input graphs;
 - Significant speedup against traditional methods.



Algorithm	Attributed (Y/N)	Exact Solution (Y/N)	Time Complexity	Space Complexity	
Fixed Point (FP) [Vishwanathan et al' 10]	\checkmark	\checkmark	$O(n^3)$	$O(m^2)$	
Conjugate Gradient (CG) [Y Saad et al' 03]	\checkmark	\checkmark	$O(n^{3})$	$O(m^2)$	
Sylv. [Vishwanathan et al' 10]	\checkmark	\checkmark	$O(n^3)$	$O(m^2)$) 8
ARK [U Kang et al' 12]	\checkmark	×	$O(n^{2})$	$O(n^{2})$	1
Cheetah [L Li et al' 10]	\checkmark	X	$O(rn^2)$	$O(n^2)$	١.
NI-Sim [C Li et al' 10]	×	X	$O(n^2)$	$O(r^2n^2)$	
FINAL-P [S Zhang et al'16]	×	1	$0(mn + n^2)$	$O(n^2)$	Thomas and the
FINAL-NE [S Zhang et al'16]	\checkmark	1	$O(lmn + ln^2)$	$O(n^2)$	Ľ
FINAL-N+ [S Zhang et al'16]	\checkmark	X	$O(n^2)$	$O(n^2)$	
FASTEN-P	X	~	$O(kn^2)$	$O(n^2)$	Ē
FASTEN-N+	1	1	$O(km + k^2 ln)$	O(m + kln)	J

Thank You!

